

Moplen EP548S

Polypropylene, Impact Copolymer

Product Description

Moplen EP548S is a nucleated heterophasic copolymer with antistatic agent used for injection moulding applications.

It exhibits an outstanding balance of mechanical properties combined with a medium high fluidity.

Moplen EP548S is extensively used in housewares and in thin-walled containers for food packaging (e.g. margerine tubs, yoghurt pots, etc.).

Moplen EP548S is suitable for food contact.

Product Characteristics

Status Commercial: Active

Test Method used ISO

Availability Europe, Africa-Middle East

Processing Methods Injection Molding

Features Antistatic, High Flow, Nucleated

Typical Customer Applications Housewares, Opaque Containers, Sports, Leisure and Toys				
Typical Properties	Method	Value	Unit	
Physical				
Density	ISO 1183	0.9	g/cm³	
Melt flow rate (MFR) (230°C/2.16kg)	ISO 1133	44	g/10 min	
Melt volume flow rate (230°C/2.16kg)	ISO 1133	59	cm³/10min	
Mechanical				
Tensile Modulus	ISO 527-1, -2	1550	MPa	
Tensile Stress at Yield	ISO 527-1, -2	28	MPa	
Tensile Strain at Break	ISO 527-1, -2	30	%	
Tensile Strain at Yield	ISO 527-1, -2	5	%	
Impact				
Charpy unnotched impact strength	ISO 179			
(23 °C, Type 1, Edgewise)		110	kJ/m²	
(0 °C, Type 1, Edgewise)		100	kJ/m²	
(-20 °C, Type 1, Edgewise)		85	kJ/m²	
Charpy notched impact strength	ISO 179			
(23 °C, Type 1, Edgewise, Notch A)		5.0	kJ/m²	
(0 °C, Type 1, Edgewise, Notch A)		3.5	kJ/m²	
(-20 °C, Type 1, Edgewise, Notch A)		3.0	kJ/m²	
Ductile/Brittle transition temperature	ISO 6603-2	-53	°C	

Hardness

1141411411				
Ball indentation hardness (H 358/30)	ISO 2039-1	68	MPa	
Thermal				
Heat deflection temperature B (0.45 MPa) Unannealed	ISO 75B-1, -2	95	°C	
Vicat softening temperature A/50	ISO 306	151	°C	
Vicat softening temperature B/50	ISO 306	80	°C	

Notes

Typical properties; not to be construed as specifications.

Further Information

Conveying: Conveying equipment should be designed to prevent production and accumulation of fines and dust particles that are contained in polymer resins. These particles can under certain conditions pose an explosion hazard. We recommend the conveying system used is equipped with adequate filters, is operated and maintained that no leak develops and adequate grounding exists at all times.

Health and Safety:

The resin is manufactured to the highest standards but, special requirements apply to certain applications such as food end-use contact and direct medical use. For specific information on regulatory compliance contact your local representative.

Workers should be protected from the possibility of skin or eye contact with molten polymer. Safety glasses are suggested as a minimal precaution to prevent mechanical or thermal injury to the eyes.

Molten polymer may be degraded if it is exposed to air during any of the processing and off-line operations. The products of degradation have an unpleasant odour. In higher concentrations they may cause irritation of the mucus membranes. Fabrication areas should be ventilated to carry away fumes or vapours. Legislation on the control of emissions and pollution prevention must be observed. If the principles of sound manufacturing practice are adhered to and the place of work is well ventilated, no health hazards are involved in processing the resin.

The resin will burn when supplied with excess heat and oxygen. It should be handled and stored away from contact with direct flames and/or ignition sources. In burning the resin contributes high heat and may generate a dense black smoke. Starting fires can be extinguished by water, developed fires should be extinguished by heavy foams forming an aqueous or polymeric film. For further information about safety in handling and processing please refer to the Material Safety Data Sheet.

Storage:

The resin is packed in 25 kg bags or in bulk containers protecting it from contamination. If it is stored under adverse conditions, i. e. if there are large fluctuations in ambient temperature and the atmospheric humidity is high, moisture may condense inside the packaging. Under these circumstances, it is recommended to dry the resin before use. Unfavourable storage conditions may also intensify the resin's slight characteristic odour.

The resin is subjected to degradation by ultra-violet radiations or by high storage temperatures. Therefore the resin must be protected from direct sunlight, temperatures above 40 °C and high atmospheric humidity during storage. The resin can be stored over a period of more than 6 month without significant changes in the specified properties, appropriate storage conditions provided. Higher storage temperatures reduce the storage time.

The information submitted is based on our current knowledge and experience. In view of the many factors that may affect processing and application, these data do not relieve processors of the responsibility of carrying out their own tests and experiments; neither do they imply any legally binding assurance of certain properties or of suitability for a specific purpose. The data do not relieve the customer from his obligation to control the resin upon arrival and to complain about faults. It is the responsibility of those to whom we supply our products to ensure that any proprietary rights and existing laws and legislation are observed.